Sistema de numeraçon heixadecimal

De Biquipédia
Saltar pa: nabegaçon, percura
Sistemas de numeraçon por cultura
Numerales hindu-arábico
Árabe oucidental
Árabe ouriental
Família andiana
Khmer
Mongólico
Thai
Numerales leste-asiáticos
Chinés
Counting rods
Japonés
Coreano
Suzhou
Numerales alfabéticos
Abjad
Arménio
Āryabhaṭa
Cirílica
Ge'ez
Griego (jónio)
Heibraico
Outros sistemas
Ático
Babilónica
Brahmi
Eigípcios
Etrusco
Inuíte
Maia
Romano
Urnfield
Lista de sistemas de numeraçon
Sistema de numeraçon posicional
5, 10, 15, 20
2, 4, 8, 16, 32, 64
3, 6, 9, 12, 24, 30, 36, 60
1, 7, 13, 26

L sistema heixadecimal ye un sistema de numeraçon posicional que repersenta ls númaros an base 16, antoce ampregando 16 simblos.

Stá binculado a la anformática, pus ls cumputadors questuman outelizar l byte ó oteto cumo ounidade básica de la mimória; i, debido a un byte repersentar 2^8 = 256 balores possibles, i esto poder repersentar-se cumo 2^8 = 2^4 \cdot 2^4 = 16 \cdot 16 = 1 \cdot 16^2 + 0 \cdot 16^1 + 0 \cdot 16^0, l que, segundo l teorema giral de la numeraçon posicional, eiquibale al númaro an base 16 100_{16}, dous dígitos heixadecimales corresponden satamente —permiten repersentar la mesma linha d'anteiros— a un byte.

El ye mui outelizado para repersentar númaros binairos dua forma mais cumpata, pus ye mui fácele cumberter binairos pra heixadecimal i al alrobés. Dessa forma, esse sistema ye bastante outelizado an aplicaçones de cumputadores i microprocessadores (porgramaçon, ampresson i çplays).

Debido al sistema decimal giralmente ousado pa la numeraçon solo çpor de dieç simblos, debe-se ancluir seis letras adicionales para cumpletar l sistema. L cunjunto de simblos queda, antoce, assi:

 S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \mathrm{La}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{I}, \mathrm{F}\}

Cuntaige an Heixadecimal[eiditar | editar código-fonte]

Assi cumo ne ls outros sistemas numéricos, passado l'uso de todos ls dígitos heixadecimales, se ampeça la repetiçon cula adiçon d'outro dígito: (...) 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20, 21, 22... Puode parecer pouca la defrença pa ls númaros decimales, poren esses 6 dígitos la mais fázen muita defrença. Por eisemplo, cun dous dígitos, an decimal, ye possible fazer 100 cumbinaçones defrentes. An heixadecimal, esse númaro sobe para 256.

Cumberson de Binário para Heixadecimal[eiditar | editar código-fonte]

Un dígito an heixadecimal puode repersentar un númaro binairo de 4 dígitos, dessa forma, para trasformar un binairo an heixadecimal, separamos l binairo an grupos de 4 bits, ampeçando pula dreita.

Eisemplo:

Binário: 1101000101100011.

1º - apartar an grupos de quatro bits:

1101 0001 0110 0011

2º - eidantificar ls númaros heixadecimales correspondentes:

1101 = D
0001 = 1
0110 = 6
0011 = 3

Heixadecimal: D163.

Cumberson de Heixadecimal para Binário[eiditar | editar código-fonte]

Ye l'amberso de l porcesso anterior. Cada digito será trasformado nun númaro binairo de 4 bits.

Eisemplo:
Heixadecimal: F2A7

F = 1111
2 = 0010
La = 1010
7 = 0111

Binário: 1111001010100111.

Cumberson de Heixadecimal para Decimal[eiditar | editar código-fonte]

Ber-se-á un eisemplo numérico para oubter l balor dua repersentaçon heixadecimal: 3E0,La (16) = 3×16² + I×161 + 0×160 + La×16-1 = 3×256 + 14×16 + 0×1 + 10×0,0625 = 992,625

Eisemplos para oubter un númaro heixadecimal dun númaro decimal:

Debede-se l númaro decimal por 16. 
       
       85|_16
     - 80  5,3125  Puode-se perceber que cuntén bírgula nesta debison,mas, outelizaremos 
       --        solo l quociente (5) i resto de la debison antes de la bírgula (5), 
       050       Nun squecendo de poner l quociente purmeiro i depuis l resto.
      - 48       Decimal 85 = 55(heix)
       --
       020      79|_16     L númaro 79 tamien cunténen bírgula. Pegamos 4  
       - 16     - 64  4,9375  i 15 que ye eigual la F.
        --      --        Decimal 79 = 4F(heix) 
        040      15
       - 32      .
         --      .
         080
        - 80
         --
          0


Adiçon Heixadecimal[eiditar | editar código-fonte]

Ye possible rializar adiçones diretamente cun númaros heixadecimales. Basta lembrar que ls dígitos 0-1 eiquibalen als mesmos an decimal, i que ls dígitos la-f eiquibalen als decimales 10-15. Assi cumo na soma de decimales, debemos ampeçar pula dreita. 1- Rialize la soma por colunas, i pense ne ls balores decimales de ls dígitos. 2- Se la soma de ls dígitos fur menor que 15(an decimal), registre l balor(an heixadecimal). 3- Se la soma de ls dígitos fur maior que 15, subtraia 16 de l resultado, registre l numero heixadecimal i gere un carry na próssima coluna.

Eisemplo:

DF+AC

F+C= 15+12= 27

27-16=11=B

D+La+1(carry)=13+10+1=24

24-16=8 cun carry de 1. Anton: DF+AC= 18B

Tabela de cumberson antre heixadecimal, decimal, otal i binairo[eiditar | editar código-fonte]

0heix = 0dec = 0ot 0 0 0 0
1heix = 1dec = 1ot 0 0 0 1
2heix = 2dec = 2ot 0 0 1 0
3heix = 3dec = 3ot 0 0 1 1
4heix = 4dec = 4ot 0 1 0 0
5heix = 5dec = 5ot 0 1 0 1
6heix = 6dec = 6ot 0 1 1 0
7heix = 7dec = 7ot 0 1 1 1
8heix = 8dec = 10ot 1 0 0 0
9heix = 9dec = 11ot 1 0 0 1
Laheix = 10dec = 12ot 1 0 1 0
Bheix = 11dec = 13ot 1 0 1 1
Cheix = 12dec = 14ot 1 1 0 0
Dheix = 13dec = 15ot 1 1 0 1
Iheix = 14dec = 16ot 1 1 1 0
Fheix = 15dec = 17ot 1 1 1 1

Fraçones[eiditar | editar código-fonte]

Las fraçones, ne l sou zambolbimiento heixadecimal, nun son satas a menos que l chamador seia poténcia de 2. Assi i to, ls períodos nun questuman ser mui cumplicados.

1/2 = 0,8
1/3 = 0,55...
1/4 = 0,4
1/5 = 0,33...
1/6 = 0,2AA...
1/7 = 0,249249...
1/8 = 0,2
1/9 = 0,1C1C...
1/La = 0,199...
1/B = 0,1745D1745D...
1/C = 0,155...
1/D = 0,13B13B...
1/I = 0,1249249...
1/F = 0,11...

Tabela de multiplicaçon[eiditar | editar código-fonte]

  1 2 3 4 5 6 7 8 9 La B C D I F 10
1 1 2 3 4 5 6 7 8 9 La B C D I F 10
2 2 4 6 8 La C I 10 12 14 16 18 1A 1C 1E 20
3 3 6 9 C F 12 15 18 1B 1E 21 24 27 2A 2D 30
4 4 8 C 10 14 18 1C 20 24 28 2C 30 34 38 3C 40
5 5 La F 14 19 1E 23 28 2D 32 37 3C 41 46 4B 50
6 6 C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 60
7 7 I 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69 70
8 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 80
9 9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87 90
La La 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 A0
B B 16 21 2C 37 42 4E 58 63 6E 79 84 8F 9A A5 B0
C C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 C0
D D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 D0
I I 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2 E0
F F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1 F0
10 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 100

Refréncias

  • FLOYD, Thomas L. Sistemas digitales: fundamientos i aplicaçones. Porto Alegre: Bookman, 2007. 888 p. + 2 CD-ROMs ISBN 9788560031931.

Ber tamien[eiditar | editar código-fonte]

Ícone de esboço Este sobre matemática ye un rabisco. Tu puodes ajudar la Biquipédia spandindo-lo.